
Natural Language Processing II (SC674)

Prof. Feng Zhiwei

Ch4. Feature and Unification

4.1 Feature Structures in grammar
4.1.1 Attribute-value matrix

From a reductionist perspective, the history of the natural sciences over the last few hundred
years can be seen as an attempt to explain the behavior of larger structures by the combined action
of smaller primitives.

Biology: Cell action Æ Genes action Æ DNA action
Physics: Molecular Æ Atom Æ subatomic particles

It can be called as “Reductionism”.
In NLP, we also are influenced by this reductionism.

E,g. In Chapter 2, we have proposed the following rule
 S Æ Aux NP VP
It can be replaced by two rules of following form:
 S Æ 3sgAux 3sgNP VP
 S Æ Non-3sgAux Non3sgNP VP
Lexicon rules:
 3sgAux Æ does | has | can | …
 Non3sgAux Æ do | have | can |
We attempt to combine the smaller structures actions to explain the action of larger

structures.
We shall use the feature structures to describe reductionism in NLP.
The feature structures are simply sets of feature value pairs, where features are

un-analyzable atomic symbols drawn from some finite set, and values are either atomic symbols
or feature structures.

The feature structures are illustrated with an Attribute-Value Matrix (AVM) as follows:
FEATURE1 VALUE1
FEATURE2 VALUE2

FEATUREn VALUEn

E.g. 3sgNP can be illustrated by following AVM:

 cat NP
 num sig
 person 3

 3sgAux can be illustrated by following AVM:

 cat Aux
 num sing
 per 3

In the feature structures, the features are not limited to atomic symbols as their values; they can
also have other feature structures as their values.
It is very useful when we wish to bundle a set of feature-value pairs together for similar treatment.
E,g, The feature “num” and “per” are often lumped together since grammatical subject must agree
with their predicates in both of their number and person. This lumping together can introduce the
feature “agreement” that takes a feature structure consisting of the number and person
feature-value pairs as its value.
The feature structure of 3sgNP with feature “agreement” can be illustrated as following AVM:

 cat NP
 num sing

agreement
 per 3

4.1.2 Feature path and reentrant structure

We can also use the DAG to represent the attribute-value pairs.

E,g above AVM can be represented by following DAG.

○

 cat agreement

○ ○
NP
 per num

○ ○.
 3 sing
 Fig. 1 DAG for feature structure

In DAG, a feature path is a list of features through a feature structure leading to a

particular value. For example, in Fig. 1, we can say that the <agreement num> path leads to the
value sing, <agreement per> path leads to the value 3.

If there is the shared feature structure, such feature structure will be referred to as
reentrant structure. In the case of a reentrant structure, two feature paths actually lead to the
same node in the structure.

 ○
 head cat

 ○ ○
subject S
 agreement
 ○

agreement

 ○

 per num

 ○ ○

3 sing
Fig. 2 a feature structure with shared values

In Fig. 2, the <head subject agreement> path and the <head agreement> path lead to the
same location. They shared the feature structure

per 3
 num sing

The shared structure will be denoted in the AVM by adding numerical indexes that signal

the values to be shared.
 cat s
 agreement ① num sing
 head per 3

 subject agreement ①

The reentrant structures give us the ability to express linguistic knowledge in the elegant

ways.
4.1.3 Unification of feature structures
For the calculation of feature structure, we can use the unification to do it. There are two principle
operations in the unification.:
� Merging the information content of two structure that are compatible;
� Rejecting the merging of structures that are incompatible.
Following are the examples (symbol ∪ means unification):
(1) Compatible
:

num sing ∪ num sing = num sing

○ ○ ○

num num = num

○ ○ ○

 sing sing sing

(2) Incompatible:

num sing ∪ num plur = fails!

○ ○

num num = fails

○ ○

 sing plur

(3) Symbol []:
:

num sing ∪ num [] = num sing

The feature with a [] value can be successfully matched to any value.

○ ○ ○

num ∪ num = num

○ ○ ○

 sing [] sing

(4) Merger:

num sing ∪ per 3 = num sing
 per 3

○ ○ ○

num ∪ per = num per

○ ○ ○ ○

 sing 3 sing 3

(5) The reentrant structure

agreement ① num sing
 per 3

subject agreement ①

∪ subject agreement per 3

 num sing

agreement ① num sing
 per 3

=
subject agreement ①

○ ○
agreement subject subject

○ ○ ∪ ○

 ①
 num per agreement agreement

 ○ ○ ○ ○

sing 3 ①

 per num

 ○ ○
 3 sing

○
agreement subject

 =

○ ○

 ①
 num per agreement

 ○ ○ ○

 sing 3 ①

(5) The copying capability of unification

 agreement ①

 subject agreement ①

∪ subject agreement per 3
 num sing

 = agreement ①

 subject agreement ① per 3
 num sing

○ ○
agreement subject subject

○ ○ ∪ ○

 ①
 agreement agreement

 ○ ○
 ①

 per num

 ○ ○
3 sing

○
agreement subject

○ ○

 = ①
 agreement

 ○
 ①

 per num

 ○ ○

3 sing

(5) The features merely have similar values:
In following example, there is no sharing index linking the “agreement” feature and

[subject agreement], the information [per 3.] is not added to the value of the “agreement”
feature.

 agreement num sing

subject agreement num sing

∪ subject agreement per 3

 num sing

 = agreement num sing

 subject agreement num sing
 per 3

In the result, the information [per 3.] is only added to the end of [subject [agreement]] path, but
it is not added to the end of “agreement’ (it is first line in the AVM of result). Therefore, the value
of “agreement” is only [num sing] without [per 3].

.

○ ○
agreement subject subject

○ ○ ∪ ○

 agreement agreement

 ○ ○ ○
 sing

 per num

 ○ ○ ○
sing 3 sing

○
agreement subject

○ ○

 =
 num agreement

 ○ ○

 sing

 per num

 ○ ○

3 sing

(7) The failure of unification

agreement ① num sing
 per 3

subject agreement ①

∪ agreement num sing

 per 3

 subject agreement num plur

 per 3

= fails !

○
agreement subject

○ ○

 ①
 num per agreement

 ○ ○ ○

 sing 3 ①

○
agreement subject

 ∪ = fails !

○ ○

 num per agreement

 ○ ○ ○

 sing 3

 num per

 ○ ○
 plur 3

Feature structures are a way of representing partial information about some linguistic object
or placing informational constrains on what the object can be. Unification can be seen as a way of
merging the information in each feature structure, or describing objects that satisfy both sets of
constraints.

4.1.4 Subsumption

Intuitively, unifying two feature structures produces a new feature structure that is more
specific (has more information) than, or is identical to, either of the input feature structure. We say
that a less specific (more abstract) feature structure subsumes an equally or more specific one.
Formally, A feature structure F subsumes a feature structure G if and only if:
� For every feature x in F, F(x) subsumes G(x) (where F(x) means “the value of the feature x of

feature structure F”);
� For all paths p and q in F such that F(p) = F (q), it is also the case that G(p) = G(q).

E.g.

(1) num sing

(2). per 3

(3) num sing

per 3

We have: (1) subsumes (3),
 (2) subsumes (3).

(4) cat VP

agreement ①

subject agreement ①

(5) cat VP

agreement ①

subject agreement per 3

 num sing

(6) cat VP

agreement ①

subject agreement ① per 3

 num sing

We have: (3) subsumes (5), (4) subsumes (5), (5) subsumes (6), (4) and (5) subsume (6)..

Subsumption is a partial ordering: there are pairs of feature structures that neither subsume nor are
subsumed by each other:

(1) does not subsume (2),
(2) does not subsume (1),
(3) does not subsume (4),
(4) does not subsume (3).

Since every feature structure is subsumed by the empty structure [], the relation among feature
structures can be defined as a semi-lattice. The semi-lattice is often represented pictorially with the
most general feature [] at the top and the subsumption relation represented by lines between
feature structures.
lower []

less information (1) (2)

 (3) (4)_

 (5)
more information
higher (6)

 Fig. 4 subsumption represented by semi-lattice

.
4.1.5 Formal definition of Unification

Unification can be formally defined in terms of the subsumption semi-lattice as follows:.
Given two feature structures F and G, the unification F∪G is defined as the most

general feature H such that F subsume H and G subsume H.
Since the information ordering defined by unification is a semi-lattice, the unification

operation is monotonic. This means:
� If some description is true of a feature structure, unifying it with another feature structure

results in a feature structure that still satisfies the original description.
� The unification operation is order-independent; given a set of feature structures to unify, we

can check them in any order and get the same result
Unification is a way of implementing the integration of knowledge from different constraints:
� Given two compatible feature structures as input, it produces a new feature structure which

contains all the information in the inputs;
� Given two incompatible feature structures, it fails.

4.2 Feature structures in the Grammar
4.2.1 Augmentation of CFG rules with feature structures:
� To associate complex feature structures with both lexical items and instances of grammatical

categories.
� To guide the composition of feature structures for larger grammatical constituents based on

the feature structures of their component parts.
� To enforce compatibility constraints between specified parts of grammatical constructions.
Formally, we can use following notation to denote the grammar augmentation:
 β0 Æ β1 … βn

 (set of constraints)

The specified constraints have one of the following forms:

(βi feature path) = Atomic value

(βi feature path) = (βj feature path)
The notation (βi feature path) denotes a feature path through the feature structure

associated with the βi component of the CFG rule.

For example, the rule

 S Æ NP VP

can be augmented with attachment of the feature structure for number agreement as

follows:

 S Æ NP VP

 (NP num) = (VP num)

In this case, the simple generative nature of CFG rule has been fundamentally changed

by this augmentation. These changes are following two aspects:

� The elements of CFG rules will have feature-based constraints associated with

them. This reflects a shift from atomic grammatical categories to more complex

categories with properties.

� The constraints associated with individual rules can refer to the feature

structures associated with the parts of the rule to which they are attached.

4.2.2 Agreement
There are two kinds of agreement in English.
� Subject-verb agreement

S Æ NP VP
(NP agreement) = (VP agreement)

E.g. This flight serves breakfast.
 These flights serve breakfast.

S Æ Aux NP VP
(Aux agreement) = (NP agreement)
E.g. Does this flight serve breakfast?
 Do these flights serve breakfast?

� Determiner-nominal agreement
NP Æ Det Nominal
(Det Agreement) = (Nominal Agreement)
(NP Agreement) = (Nominal Agreement)
E,g. This flight.
 These flights.

The constraints involve both lexical and non-lexical constituents.
� The constraints of lexical constraints can directly write in the lexicon:

 Aux Æ do
 (Aux agreement num) = plur
 (Aux agreement per) = 3
 Aux Æ does
 (Aus agreement num) = sing
 (Aux agreement per) = 3

Determiner Æ this
 (Det agreement num) = sing

 Determiner Æ these
 (Det agreement num) = plur
 Verb Æ serves
 (Verb agreement num) = sing
 Verb Æ serve
 (Verb agreement num) = plur
 Noun Æ flight
 (Noun agreement num) = sing
 Noun Æ flights
 (Noun agreement num) = plur

� The constraints of non-lexical constituent can acquire values for at least some of their features

from their component constituents.

 VP Æ Verb NP

 (VP agreement) = (Verb agreement)
The constraints of ”VP” come from the constraints of “Verb”.
 Nominal Æ Noun
 (Nominal agreement) = (Noun agreement)
The constraints of “Nominal” come from the “Noun”.

4.2.3 Head features
The features for most grammatical categories are copied from one of the children to the parent.
The child that provides the feature is called the head of the phrase, and the features copied are
called head features.
In the following rules,

VP Æ Verb NP
 (VP agreement) = (Verb agreement)

NP Æ Det Nominal
(Det agreement) = (Nominal agreement)
(NP agreement) = (Nominal agreement)

 Nominal Æ Noun
 (Nominal agreement) = (Noun agreement)

the verb is the head of the VP, the nominal is the head of NP, the Noun is the head of the nominal.
In these rules, the constituent providing the agreement feature structure up to the parent is the head
of the phrase. We can say that the agreement feature structure is a head feature.
We can rewrite our rules by placing the agreement feature structure under a HEAD feature and
then copying that feature upward:

VP Æ Verb NP
 (VP head) = (Verb head)

NP Æ Det Nominal
(Det head Agreement) = (Nominal head Agreement)
 Det and Nominal locate in the same level, their “HEAD Agreement” is equal.
(NP head) = (Nominal head)

 Nominal Æ Noun
 (Nominal head) = (Noun head)

The lexical rules can be rewritten as follows:
 Verb Æ serves
 (Verb head agreement num) = sing
 Verb Æ serve
 (Verb head agreement num) = plur
 Noun Æ flight

 (Noun head agreement num) = sing
 Noun Æ flights
 (Noun head agreement num) = plur

The conception of a head is very significant in grammar, because it provides a way for a syntactic
rule to be linked to a particular word.

4.2.4 Sub-categorization
4.2.4.1 An atomic feature SUBCAT:
Following is a rule with complex features
 Verb-with-S-comp Æ think
 VP Æ Verb-with-S-comp S
We have to subcategorize the verbs to some subcategories. So we need an atomic feature called
SUBCAT.
� Opaque approach

Lexicon:
Verb Æ serves

<Verb head agreement num> = sing
<Verb head subcat> = trans

 Rules:
 VP Æ Verb
 <VP head> = <Verb head>
 <VP head subcat> = intrans

 VP Æ Verb NP
 <VP head> = <Verb head>
 <VP head subcat> = trans

 VP Æ Verb NP NP
 <VP head> = <Verb head.
 <VP head subcat. = ditrans

In these rules, the value of SUBCAT is un-analyzable. It does not directly encode either the
number or type of the arguments that the verb expects to take.
This approach is somewhat opaque, it is not so clear.

� .Elegant approach:

A more elegant approach makes better use of the expressive power of feature structures,
allows the verb entries to directly specify the order and category type of the arguments they
require.
The verb’s subcategory feature expresses a list of its objects and complements.
Lexicon:
 Verb Æ serves

<Verb head agreement num> = sing

<Verb head subcat first cat> = NP
<Verb head subcat second> = end

 Verb Æ leaves
 <Verb head agreement num> = sing
 <Verb head subcat first cat> = NP
 <Verb head subcat second cat> = PP
 <Verb head subcat third> = end

E..g. “we leave Seoul in the morning”.

 Rules:
 VP Æ Verb NP
 <VP head> = <Verb head>
 <VP head subcat first cat> = <NP cat>
 <VP head subcat second> = end
4.2.4.2 Sub-categorization frame
The sub-categorization frame can be composed of many different phrase types.
� Sub-categorization of verb:
Each verb allows many different sub-categorization frames. For example, verb ‘ask’ can allow
following sub-categorization frame:
 Subcat: Example

Quo . asked [Quo “What was it like?”]
 NP asking [NP a question]
 Swh asked [Swh what trades you’re interested in]
 Sto ask [Sto him to tell you]
 PP that means asking [PP at home]
 Vto asked [Vto to see a girl called Sabina]
 NP Sif asked [NP him] [Sif whether he could make]
 NP NP asked [NP myself] [NP a question]
 NP Swh asked [NP him [Swh why he took time off]
A number of comprehensive sub-categorization frame tagsets exist. For example, COMLEX
(Macleod, 1998), ACQUILEX (Sanfilippo, 1993).
� Sub-categorization of Adjective

Subcat: Example

 Sfin It was apparent [Sfin that the kitchen was the only room…]
 PP It was apparent [PP from the way she rested her hand over his]

Swheth It is unimportant [Swheth whether only a little bit is accepted]

� Sub-categorization of noun
Subcat: Example

Sfin the assumption [Sfin that wasteful methods have been employed]
Swheth the question [Swheth whether the authorities might have decided]

4.2.5 Long-Distance Dependencies
Sometimes, a constituent subcategorized for by the verb is not locally instantiated ,but is in a
long-distance relationship with the predicate.
For example, following sentence:

Which flight do you want me to have the travel agent book?
Here, “which flight” is the object of “book”, there is a long-distance dependency between them.
The representation of such long-distance dependency is a very difficult problem, because the verb
whose subcategorization requirement is being filled can be quite distance from the filler.
Many solutions to representing long-distance dependency were proposed in unification grammars.
One solution is called “Gap List”. The gap list implements a list as a feature gap, which is passed
up from phrase to phrase in the parse tree. The filler (E.g. ”which flights”) is put in the gap list,
and must eventually be united with the subcategorization frame of some verb.

4.3 Implementing unification
4.3.1 Unification data structures
The unification operator takes two feature structures as input and returns a single merged feature if
successful, or a feature signal if the two inputs are not compatible. The implementation of the
operator is a relatively straightforward recursive graph matching algorithm. The algorithm loops
through the features in one input and attempts to find a corresponding feature in the other. If all of
feature match, then the unification is successful. If any single feature causes a mismatch then the
unification fails.
The feature structures are represented using DAGs with additional fields. Each feature structure
consists of two fields:
� A content field:
� A pointer field.

The content field may be null or contain a pointer to another feature structure. Similarly, the
pointer field may be null or contain a pointer to another feature structure.

 The operation is as follows:
� If the pointer field of the DAG is null, then the content field of the DAG contains the actual

feature structure to be processed.
� If the pointer field is non-null, then the destination of the pointer represents the actual feature

structure to be processed.
� The merger aspects of unification will be achieved by altering the pointer field of DAGs

during processing.

For example, if we have the following feature structure:

 num sing
 per 3

The extended DAG representation is as following:

 num CONTENT sing
 CONTENT POINTER null

per CONTENT 3
 POINTER null

 POINTER null

The DAG is as follows:

 ○
 PTR CT

 ○ ○

null num per

 ○ ○
 PTR CT PTR CT

○ ○ ○ ○

 null sing null 3
 Fig. 5. An extended DAG notation

The example of the unification of feature structures is as follows:

 num sing ∪ per 3 = num sing
 per 3
The DAGs of original arguments is as follows:

 ○ ○
 PTR CT PTR CT

 ○ ○ ○ ○

null num null per

 ○ ○
 PTR CT PTR CT

 ○ ○ ○ ○

null sing null 3

Fig. 6 The original arguments

The unification shall result in the creation of a new structure containing the union of the
information from the two original arguments:
� Adding a “per” feature to the first argument;
� Assigning it a value by filling its PTR field with a pointer to the appropriate location in the

second argument.

 ○ ○
 PTR CT PTR CT

 ○ ○ ○ ○

null num per null per

 ○ ○ ○
 PTR CT CT PTR CT
 ○ ○ ○ ○ ○

null sing null null 3

 PTR

 Fig.7. adding a “per’ feature

� Set the pointer field of the second argument to point at the first one.

 PTR
 ○ ○
 PTR CT CT

 ○ ○ ○

null num per null per

 ○ ○ ○
 PTR CT CT PTR CT
 ○ ○ ○ ○ ○

null sing null null 3

 PTR

 Fig.8. The final result of unification

More complex examples:

(1) The reentrant structure.

 cat s
 agreement ① num sing
 head per 3

 subject agreement ①

The DAG:

 ○
 PTR CT

 ○ ○
 null head cat

 ○ ○
 PTR CT PTR CT

○ ○ ○ ○
subject agreement null S

 ○ ○
 ①

PTR CT PTR CT

○ ○ ○ ○

agreement per num

 ○ ○ ○
 ①

PTR CT PTR CT

 ○ ○ ○ ○ ○ ○
 null 3 sing

(2) Compatible feature structure:
num sing ∪ num sing = num sing

The original arguments::

○ ○

 PTR CT PTR CT

○ ○ ○ ○
null null

num ∪ num

○ ○
 PTR CT PTR CT

○ ○ ○ ○
 sing sing
The result of unification:

 PTR
○ ○ ○

CT PTR CT PTR CT

○ ○ ○ ○ ○

null null
num ∪ num = num

○ ○ ○

 PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
 null sing null sing

(3) Incompatible:

num sing ∪ num plur = fails!
The result of unification:

○ ○

PTR CT PTR CT

○ ○ ○ ○
null ∪ null

num num = fails

○ ○
PTR CT PTR CT

○ ○ ○ ○
 sing plur

(4) Symbol []:

:
num sing ∪ num [] = num sing

The original arguments:

○ ○

 PTR CT PTR CT

○ ○ ○ ○
null null

num ∪ num

○ ○
 PTR CT PTR CT

○ ○ ○ ○
null sing null []

The result of unification:

○ ○ ○

 PTR CT PTR CT PTR CT

○ ○ ○ ○ ○
null null

num ∪ num = num

○ ○ ○
 PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
 sing [] null sing

(5) Merger
:

num sing ∪ per 3 = num sing
 per 3

The original arguments:

○ ○

 PTR CT PTR CT

○ ○ ○ ○
null null

num ∪ per

○ ○
 PTR CT PTR CT

○ ○ ○ ○
null sing null 3

The result of unification:

○ ○ ○

 PTR CT PTR CT PTR CT

○ ○ ○ ○ ○
null null

num ∪ per = num per

○ ○ ○ ○
 PTR CT PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○ ○ ○
null sing null 3 null sing null 3

(6) The reentrant structure

agreement ① num sing
 per 3

subject agreement ①

∪ subject agreement per 3

 num sing

agreement ① num sing
 per 3

=
subject agreement ①

The original arguments:

 ○ ○
 PTR CT PTR CT

○ ○ ∪ ○ ○
subject agreement subject

 ○ ○ ○
 ①

PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○

agreement num per agreement

 ○ ○ ○ ○
 ①

PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○ ○ ○ ○
 null null sing null 3
 per num

 ○ ○
 PTR CT PTR CT

 ○ ○ ○ ○
 null 3 null sing

The result of unification:

 ○
 PTR CT

○ ○
subject agreement

=
 ○ ○
 ①

PTR CT PTR CT

○ ○ ○ ○

agreement num per

 ○ ○ ○
 ①

PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○ ○
 null null sing null 3

(7) The copying capability of unification

 agreement ①

 subject agreement ①

∪ subject agreement per 3
 num sing

 = agreement ①

 subject agreement ① per 3
 num sing

The original arguments:

○ ○
 PTR CT PTR CT

○ ○ ○ ○

agreement subject subject

○ ○ ∪ ○

 PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○ ○
 ①
 agreement agreement

 ○ ○

 PTR CT PTR CT

 ○ ○ ○ ○
 null ①

 per num

 ○ ○

 PTR CT PTR CT

 ○ ○ ○ ○

null 3 null sing

The results of unification:

○
 PTR CT

○ ○

agreement subject

○ ○

 PTR CT PTR CT

 ○ ○ ○ ○
 ①
 agreement

 ○

 PTR CT

 ○ ○
 null ①

 per num

 ○ ○

PTR CT PTR CT

○ ○ ○ ○
null 3 null sing

(8) The features merely have similar values:
 agreement num sing

subject agreement num sing

∪ subject agreement per 3

 num sing

 = agreement num sing

 subject agreement num sing
 per 3

The original arguments:

○ ○
 PTR CT PTR CT

○ ○ ○ ○

 null null
 agreement subject subject

○ ○ ∪ ○

 PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
 null nul null
 num agreement agreement

 ○ ○ ○

 PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○ ○

null sing null null
 num per num

 ○ ○ ○

 PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○ ○

null sing null 3 null sing

The results of unification:

○
 PTR CT

○ ○

 null
 agreement subject

= ○ ○

 PTR CT PTR CT

○ ○ ○ ○

 null nul
 num agreement

 ○ ○

 PTR CT PTR CT

 ○ ○ ○ ○

null sing null null
 per num

 ○ ○

 PTR CT PTR CT

 ○ ○ ○ ○

null 3 null sing
 (9) The failure of unification

agreement ① num sing
 per 3

subject agreement ①

∪ agreement num sing

 per 3

 subject agreement num plur

 per 3

= fails !

The original arguments:

○

 PTR CT

 ○ ○
agreement subject

○ ○

 PTR CT PTR CT

○ ○ ○ ○
 ①
 num per agreement

 ○ ○ ○
PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
 ①

 ○ ○

 sing 3

○

 PTR CT

∪ ○ ○
agreement subject

○ ○

 PTR CT PTR CT

○ ○ ○ ○
 ①
 num per agreement

 ○ ○ ○
PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○

 num pre

 ○ ○ ○ ○

 sing 3

 PTR CT PTR CT

○ ○ ○ ○
null plur null 3

= fails !

4.3.2 The unification Algorithm

The unification algorithm is as follows:

function UNIFY (f1, f2) returns fstructure or failure
f1-real Å Real contents of f1
f2-real Å Real contents of f2
If f1-real is null then
 f1.pointer Å f2
 return f2
else if f2-real is null then
 f2.pointer Å f1
 return f1
else if f1-real and f2-real are identical then
 f1.pointer Å f2
 return f2
else if both f1-real and f2-real are complex feature structure then
 f2.pointer Å f1
 for each feature in f2-real do
 other feature Å Find or create
 a feature corresponding to feature in f1-real
 if UNIFY (featurer.value, other feature.value) returns failure then
 return failure
 return f1
else return failure

“Å” means “be changed to point to” or “be set to”.
� First step: To acquire the true contents of both of the arguments.. The valuables f1-real and

f2-real are the result of this pointer following process.
� Second step: To test for the various base cases of the recursion. There are three possible base

cases:
1. One or both of the arguments has a null value;
2. The arguments are identical;
3. The arguments are non-complex and non-identical.

� In the case where either of the arguments is null, the pointer field for the null argument is
changed to point to the other argument, which is then returned. The result is the both
structures now point at the same value.

� If the structure are identical, then the pointer of the first is set to the second and the second is
returned.

� If neither of the preceding tests is true, then there are two possibilities: they are non-identical
atomic values, or they are non-identical complex structures. The former case signals an
incompatibility in the arguments that leads the algorithm to return a failure signal. In the latter
case, a recursive call is needed to ensure that the component parts of the complex structures
are compatible. In this implementation, the key to the recursion is a loop over all the features
of the second argument (f2). This loop attempts to unify the value of each feature in f2 with
the corresponding feature in f1. In this loop, if a feature is encountered in f2 that is missing
from f1, a feature is added to f1 and given the value NULL. Processing then continues as if
the feature had been there to begin with. If every one of these unifications succeeds, then the

pointer field of f2 is set to f1 completing the unification of the structures and f1 is returned as
the value of the unification.

An example: Unify following feature structure.
agreement ① num sing

subject agreement ①

∪ subject agreement per 3

The extended DAGs f1 and f2:

 ○ ○
 PTR CT PTR CT

○ ○ ∪ ○ ○
subject agreement subject

 ○ ○ ○
 ①

PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
null null null

agreement num agreement

 ○ ○ ○
 ①

PTR CT PTR CT PTR CT

 ○ ○ ○ ○ ○
 null null sing null
 per

 ○
 PTR CT

 ○ ○
 null 3

These original arguments are neither identical, nor atomic, nor null, so the main loop is entered.
Looping over the features of f2, the algorithm is led to a recursive attempt to unify the values of
the corresponding “subject” feature of f1 and f2.
 agreement ① ∪ agreement per 3
These argument are also non-identical, non-atomic and non-null so the loop is entered again
leading to a recursive check of the values of the “agreement” features.

num sing ∪ per 3

In looping over the features of the second argument, the fact that the first argument

lacks “per” feature is discovered. A “per” feature initialized with a “null”

value is added to the first argument. This changes the previous unification to the

following:

num sing ∪ per 3

per null

After adding this new “per” feature, the next recursive call leads to the

unification of the “null” value of the new feature in the first argument with the

3 value of the second argument. This recursive call results in the assignment of

the pointer field of the first argument to the 3 value in f2.

 ○ ○
 PTR CT PTR CT

○ ○ ∪ ○ ○
subject agreement subject

 ○ ○ ○
 ①

PTR CT PTR CT PTR CT

○ ○ ○ ○ ○ ○
null null null

agreement num per agreement

 ○ ○ ○ ○
 ①

PTR CT PTR CT CT PTR CT

 ○ ○ ○ ○ ○ ○
 null null sing null null
 per

 PRT ○
 PTR CT

 ○ ○
 null 3

Since there are no further features to check in the f2 argument at any level of recursion. Each in
turn sets the pointer for its f2 argument to point at its f1 argument and returns it. The result of all
arguments is as following:

 ○ ○
 CT PTR CT

○ ○ ∪ ○
subject agreement subject

 ○ ○ ○
 ① PTR

PTR CT PTR CT CT

○ ○ ○ ○ ○
null null null

agreement num per agreement

 ○ ○ ○ ○
 ① PTR

PTR CT PTR CT CT CT

 ○ ○ ○ ○ ○
 null null sing null
 per

 PRT ○
 PTR CT

 ○ ○
 null 3

4.3.3 Parsing with unification constraints
The CFG rule with unification constraint is as follows:
 S Æ NP VP

<NP head agreement> = <VP head agreement>
<S head> = <VP head>

Its AVM is:

S head ①

NP head agreement ②

VP head ① agreement ②

This AVM can be represented by a DAG. So we can use AVM to represent the DAG.

In Earley parser, we can add the DAG to the rule:

S Æ . NP VP, [0, 0], [], Dag
 [] means that the parsing just starts. It marks the position of dot of rule in the DAG.

Dag
S head ①

NP head agreement ②

VP head ① agreement ②

In the chart, it is an active edge.

NP Æ Det. Nominal, [0,1], [Sdet], Dag1

Dag1 NP head ①

 Det head agreement ② num sing

 Nominal head ① agreement ②

It is also an active edge.

Nominal Æ Noun., [1,2], [Snoun], Dag2

Dag2 Nominal head ①

 Noun head ① agreement num sing

It is an inactive edge.

By his means, we can integrate unification into Earley parser.

4.4 Types and Inheritance
The basic feature structures have two problems that have led to extensions to the formalism:
� First problem: there is no way to place a constraint on what can be the value of a feature.
For example, in our current system, there is nothing to stop “num” from have the value 3rd or
feminine as values:

num feminine

This problem has caused many unification-based grammatical theories to add various mechanisms
to try constrain the possible values of a feature. E.g.
FUG (Functional Unification Grammar, Kay, 1979), LFG (Lexical Functional Grammar, Bresnan,
1982), GPSG (Generalized Phrase Structure Grammar, Gazdar et al\., 1985), HPSG (Head-Driven

Phrase Structure Grammar, Pollard et al., 1994).
� Second problem: In the feature structure, there is no way to capture generalization across

them. For example, the many types of English verb phrases share many features, as do the
many kinds of sub-categorization frames for verbs.

A general solution to both of these problems is the use of types.
Type system for unification grammar has the following characteristics:
� Each feature structure is labeled by a type.
� Each type has appropriateness conditions expressing which features are appropriate for it.
� The types are organized into a type hierarchy, in which more specific types inherit properties

of more abstract one.
� The unification operation is modified to unify the types of feature structures in addition to

unifying the attributes and values.
In such typed feature structure systems, types are a new class of objects, just like attributes and
values for standard feature structures.
There are two kinds of types:
1. Simple types (atomic types): It is an atomic symbol like sg or pl, and replaces the simple

atomic values used in standard feature structures.
All types are organized into a multiple-inheritance type hierarchy (a partial order or lattice).
Following is a type hierarchy of new type agr, which will be the type of the kind of atomic
object that can be the value of an AGREEMENT feature.
 agr

 1st 3rd sg pl

1-sg 3-sg 1-pl 3-pl

 3sg-masc 3sg-fem 3sg-neut
In this hierarchy, 3rd is a subtype of agr, and 3-sg is a subtype of both 3rd and sg.
The unification of any two types is more specific type than the two input types. Thus
 3rd ∪ sg = 3sg
 1st ∪ pl = 1pl
 1st ∪ arg = 1st
 3rd ∪ 1st = ┻ (undefined, fail type)

2. Complex types: The complex types specify:
� A set of features that are appropriate for that type.
� Restrictions on the values of those features (expressed in terms of types).
� Equality constraints between the values.
For example, the complex type verb represents agreement and verb morphological form
information.
A definition of verb would define two appropriate features:
� AGREE: It takes values of type arg defined above. :
� VFORM: It takes values of type vform which subsumes the seven subtypes: finite, infinitive,

gerund, base, present-participle, past-participle, passive-participle.
Thus verb would be defined as follows:

verb
AGREE arg
VFORM vform

The type noun might be defined with the AGREE feature, but without the VFORM feature.
 noun

AGREE arg
The unification of typed feature structures:

verb ∪ verb = verb
SGREE 1st AGREE sg AGREE 1-sg
VFORM gerund VFORM gerund VFORM gerund
Complex types are also part of the type hierarchy. Subtypes of complex types inherit all the

feature of their parents, together with the constraints on the values. Following is a small part of
this hierarchy for the sentential complement of verb (Sanfilippo, 1993):
 Tr-fin-comp-cat
 trans-comp-cat
 tr-swh-comp-cat
 sfin-comp-cat
 tr-sbase-comp-cat
 swh-comp-cat
comp-cat
 sbase-comp-cat
 intr-swh-comp-cat intr-sfin-comp-cat
 sinf-comp-cat

 intrans-comp-cat intr-sbase-comp-cat
 intr-sinf-comp-cat
Ex:

tr-swh-comp-cat: “Ask yourself whether you have become better informed.”
 intr-swh-comp-cat: Mosieur asked whether I wanted to ride.”
It is possible to represent the whole phrase structure rule as a type. Sag and Wasow (1999) take a
type phrase which has a feature called DTRS (daughters), whose value is a list of phrases. The
phrase “I love Seoul” could have the following representation (showing only the daughter
feature):

phrase
 CAT VP
 CAT PRO

DTRS , CAT V CAT NP
 ORTH I DRTS ,
 ORTH LOVE ORTH SEOUL

The resulting typed feature structures place constraints on which type of values a given feature

can take, and can also be organized into a type hierarchy. In this case, the feature structures can be
well typed.

