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7.1 Single feature and complex feature 
The linguistic constituents in the CFG were described by single features. 
For example, we can use following single features to describe a CFG grammar. 
(1) SÆNPa VPa 
(2) SÆNPb VPb 
(3) SÆNPc VPc 
(4) SÆNPd VPd 
(5) SÆNPe VPe 
In these rules, there are correspondence between the NP and VP, this correspondence can deal 
with the agreement between the gender, number and person between NP and VP. 
Lexicon: 

je: <cat> = NPa 
tu: <cat> = NPb 
elle: <cat> = NPa 
nous: <cat> = NPc 
vous: <cat> = NPd 
ils: <cat> = NPe 
tombe : <cat> = VPa 
tombes: <cat> = VPb 
tombons: <cat> = VPc 
tombez: <cat> = VPd 
tombent: <cat> = VPe 
 
This grammar generates exactly six French sentences, of which ‘elle tombe’ (‘she falls’) is 

typical. 
<cat> of  ‘elle’ is NPa. So the <cat> of verb ‘tomber’ (‘to fall’) must be VPa, it equals to 

‘tombe’. So we can get: 
                elle tombe. 
By this means, we can generate following sentences: 
                 Je tombe (I fall) 
                 Tu tombes (you fall) 
                 Nouis tombons (we fall) 
                 Vous tombez (you fall) 
                 Ils tombent (they fall) 
All six sentences intuitively have exactly the same structure, yet our grammar employs five 

distinct rules nearly one rule for each. This is wasteful and obscures an evident generalization 
about simple French sentences. 

Furthermore, if we try and extend this grammar to encompass the imperfect 
                    Elle tombait (she was falling) 
Or three words sentences such as  



                     Elle est tombee (She has fallen) 
Then we need still more S expansion rules, even if we decide to treat the auxiliary ‘etre’ form 

as an element of the verb phrase in the latter case. 
In this case, our CFG grammar will become very complex. 
In order to avoid the complicity of rules, we propose the following solution – complex  

feature apparatus: 
Rule: 
 SÆNP VP 
  <NPper> = <VPper> 
  <NPnum> = <VPnum) 
Here ‘per’ represents the person, ‘num’ represents the number. <NPper> = <VPper> means 

the agreement of person and number between NP and VP. The feature of NP and VP in this rule 
becomes complex, but the form of the rule is simple. We need only one rule to describe the 
phenomena described by five rules. 

However, the lexicon must become complex. 
Lexicon: 
 je:   <cat> = NP 
   <per> = 1 
   <num> = sing 
 tu:   <cat> = NP 
   <per> = 2 
   <num> = sing 
 elle:  <cat> = NP 
   <per> = 3 
   <num> = sing 
 nous  <cat> = NP 
   <per> = 1 
   <num> = plur 
 vous: <cat> = NP 
   <per> = 2 
   <num> = plur 
 ils:  <cat> = NP 
   <per> = 3 
   <num> = plur 
 tombe:  <cat> = VP 
   <per> = 1 
   <num> = sing 
 tombe:  <cat> = VP 
   <per> = 3 
   <num> = sing 
 tombes; <cat> = VP 
   <per> = 2 
   <num> = sing 
 



 tombons: <cat> = VP 
   <per> = 1 
   <num> = plur 
 tombez: <cat> = VP 
   <per> = 2 
   <num> = plur 
 tombent: <cat> = VP 
   <per> = 3 
   <num> = plur 
This grammar generates exactly the same six French sentences as our original grammar, but it 

does so with only a single rule. 
The apparent cost: 
� Each entry in lexicon seems more verbose (containing too many features) 
� ‘tombe’ has two entries while previously one sufficed. 

The application of complex feature can simplifies the description of rule. 
 
7.2 Feature structures as graphs  
� Feature matrix: We can use the feature matrix to represent the complex features. 

For example, the French pronoun ‘nous’ can be represented as follows: 
 

cat  NP 
per  1 
num  plur 
 
A feature contains two parts: attribute and its value. It is a “attribute-value” pair. The single 

feature consists one “attribute-value” pair, complex feature consists several “attribute-value” pairs, 
it is a “feature matrix”. 
� Directed acyclic graph: We can also use directed acyclic graph (DAG) to represent the 

complex features. 
 

The graph is directed because the arcs have directions, indicated by arrows, and it is acyclic 
because there are no cycles in it – it is not possible to get from a node to itself just by following 
the arrow. In our example, values gave all been atomic, which is to say that they have had no 
internal structure. 

“nous” can be represented by directed acyclic graph as follows: 
 
 
   ○ 
 
   cat    per         num 

 
○  ○    ○ 
NP        1        plur 
 Fig. 1  directed acyclic graph 



� Category-valued feature: Same time, we can also use “category-valued feature” in which 
features are allowed to take categories as their values (not only atomic value). 
Category-valued feature allow many significant grammatical generalizations to be 
captured rather straightforwardly. For example, in our French grammar, we can use 
category-valued feature “arg0” to handle the agreement. Our S expansion rule can simple 
require the subject (NP) to be identical to the values of the arg0 feature in the VP. We can 
thus put into the arg0 feature for a verb all the requirements it places on its subject (NP) 
– category, person, number, and so on. 

This rule is shown, along with the revised lexical entries necessary for the verb forms. The 
lexical entries for the pronouns remain as in the previous example. 
Rule: 
   SÆX VP 
  <VP arg0> = X 
Lexicon: 
Pronoun: 
 je:   <cat> = NP 
   <per> = 1 
   <num> = sing 
 tu:   <cat> = NP 
   <per> = 2 
   <num> = sing 
 ell:  <cat> = NP 
   <per> = 3 
   <num> = sing 
 nous  <cat> = NP 
   <per> = 1 
   <num> = plur 
 vous: <cat> = NP 
   <per> = 2 
   <num> = plur 
 ils:  <cat> = NP 
   <per> = 3 
   <num> = plur 
verb: 
 tombe:  <cat> = VP 
   <arg0 cat> = NP 
   <arg0 per> = 1 
   <arg0 num> = sing 
 tombe:  <cat> = VP 
   <arg0 cat> = NP 
   <arg0 per> = 3 
   <arg0 num> = sing 
 tombes; <cat> = VP 
   <argo cat> = NP 



   <arg0 per> = 2 
   <arg0 num> = sing 
 tombons: <cat> = VP 
   <arg0 cat> = NP 
   <arg0 per> = 1 
   <arg0 num> = plur 
 tombez: <cat> = VP 
   <arg0 cat> = NP 
   <arg0 per> = 2 
   <arg0 num> = plur 
 tombent: <cat> = VP 
   <arg0 cat> = NP 
   <arg0 per> = 3 
   <arg0 num> = plur 
We can use our graph notation to good effect in displaying the structure of the verbal 
categories assumed in our revised of the French grammar fragment. 
For example, “tombons” can be represented by following DAG: 
 
.                     ○ 
 
            cat                  arg0 
 
          ○                       ○ 
         VP 
                       cat       per             num 
 

○              ○              ○ 
NP              1               plur 
Fig 2. DAG for ‘tombons” 

Fig2. shows the category to which the word “tombons” belongs. We will refer to a feature as being 
category-valued if and only if it is not atom valued. Thus, arg0 is category valued, whereas cat, per 
and num are all atom valued. 
Notice that our use of notation such as “<arg0 num> = plur” can be seen to specify a path in the 
DAG(<arg0 num>) and tells us the label on the node at the end of the path (plur). All the feature 
on the end of the path is “atom-valued feature”. If a feature is not the atom-valued feature, it must 
be the category-valued feature. 
� Inheritance of feature 
In the DAG, there is the inheritance relationship between different categories. The VP can 
inherits the tense feature of verb. If VP is mother category, the verb is daughter category, due 
to the mother category inherits the features of daughter category, so the daughter category is 
known as the “head” of the mother category. The verb is the head of VP because VP inherits 
the tense feature of verb. 
 
According to the concept of “head”, we can write a typical VP rule as follows: 



           Rule 
   VPÆV NP PP 
    <V head> = <VP head> 
This requires that the value of the “head” feature on the V and that on the mother VP be 
identical. If the head of the V contains an attribute value pair that is inconsistent with a pair in 
the head of the VP, then the rule is inapplicable. The values of head here will not be atomic 
but will themselves be DAGs. 
   So far, the feature graphs that we have presented have always been trees. However, if we 
have category-valued features it is convenient to take advantage of the flexibility offered by 
general DAGs. 
Consider the following extended VP rule: 
 Rule 
  VPÆV NP PP 
   <V head> = <VP head> 
   <VP verb> = <V> 
We can represent this rule by following two DAGs: 
       (a)                        (b)              
 

○                             ○ 
 

      head           verb            head            verb 
 
     ○               ○           ○                  ○ 
    ……                          ……        head 

                             head 
                               
                          ○ 
                         …… 
                         Fig. 3 alternative representations for VP category 
In Fig. 3, the repeated values of the head features have been omitted. The first involves having two 
copies of the substructure that appears twice, whereas the second involves a sharing of the 
common substructure. Which of these we choose depends on what we want “=” to mean and what 
we expect to follow from what. 
From: 
                <VP head> = <VP verb head> 
  and 
                 <VP verb head num> = sing 
we would like it to follow that 
                 <VP head num> = sing 
which is to say that the VP inherits all the head feature of its verb. 
In a sharing interpretation, “=” means that two structures are the same structure, rather than that 
they just happen to have the same values for all features. We will interpret “=” as specifying that 
two categories or parts of categories must share, rather than simply have the same value. 
 The DAG in Fig. 3 (a) means: there are two head substructures, we can add some information to 



one side of head in the DAG, and don’t touch the head in the other side of DAG. However, the 
DAG in Fig. 3(b) means “sharing”. We can not add some information to the heads in one side and 
don’t touch the head on the other side. It is the interpretation of “sharing”.  
7.3 Subsumption, unification and generalization 
Computational implementations of principles of feature matching crucially depend upon notion of 
subsumption, unification and generalization. 
We can define subsumption as follows: 
7.3.1 Subsumption:  
A category A subsumes a category B if and only if: 
� every atom-valued feature specification in A is in B 
� for every two feature values that share anywhere in A, the corresponding values share in B, 

and 
� for every category-valued feature specification in A, there is a value for that feature in B, and 

the value of the feature in A subsumes the value in B. 
If A subsumes B, then we may refer to B as an extension of A or say that B extends A”. 
Category A properly subsumes category B if A contains less information than B; that is, it is a less 
informative description. Thus, every piece of information in A must be present in B, but not vice 
versa. 
(a)                 (b)                 (c)               (d) 
 
      ○                ○                 ○                  ○ 
  cat              cat        per      cat       num      cat      per  num   
 
 

○           ○         ○     ○         ○     ○      ○      ○ 
NP          NP         1      NP        plur    NP       1      plur 
                                 Fig 1. Example categories 
In Fig 1., category (a) subsumes both category (b) and category (c), but neither (b) nor (c) 

subsumes the other. However, category (b) and (c) each subsume category (d). 
We can represent the ordering categories on subsumption in Fig.2. In Fig.2, the set of 

categories can be displayed on a lattice diagram with less informative categories shown above 
their extension or the more informative categories. 
 

                                                  lower 
 
                        (a)                     less informative 
 
 
                    (b)       (c)                more informative 
 
                                                  higher 
                        (d) 
 
                            Fig 2. Lattice of possible categories 



An important operation on categories is that of unification. This notion is closely 
analogous to the operation of union on sets. Unification is undefined for categories containing 
feature specifications that contradict each other. 
The definition of Unification is as follows: 
7.3.2 Unification: 
The unification of two categories is the smallest category that extends both of them, if such a 
category exists. Otherwise the unification is undefined. 
In terms of the lattice diagram, the unification of two categories is the highest category that is 
below both of them. It contains the pooled information from the two categories, but no more. In 
our example, category (d) can be seen to be the unification of the set containing categories (b) and 
(c). category (d) also is the unification of the set containing categories (a), (b) and (c). 
However, if we look for the unification of (b) with the category in Fig. 3, we find it to be 
undefined. 
 
                                  ○ 
 
                      cat       per           case 
 
                     ○            ○               ○ 
                     NP           2                nom 
                         Fig. 3  further example category 
7.3.3 Generalization 

The generalization of two categories is the largest category that subsumes both of them. 
In the lattice diagraph, the generalization of two categories is the lowest category that 

comes above both. In our example, category (a) is the generalization of the set  containing 
categories (b) and (c). category (a) is likewise the generalization of the set containing categories 
(a), (b) and (c), and of the set containing (d) and the category of Fig. 3. 

The generalization in this domain is similar as the intersection in set theory. 
7.3.4 Feature path and reentrant structure 

Most important notion is unification. Now we shall discuss the operation of unification.: 
We use the DAG to represent the attribute-value pair.  
 

○ 
 
                         cat                     agreement 
 

○                                ○ 
NP 

                           per            num 
 

○                   ○. 
                                        3                  sing 
                              Fig. 4 DAG for feature structure 
This correspondent matrix of the DAG is as follows: 



   cat               NP 
   agreement         num     sing 
                     Per      3 
 

In DAG, a feature path is a list of features through a feature structure leading to a 
particular value. For example, in Fig. 3, we can say that the <agreement num> path leads to the 
value sing, <agreement per> path leads to the value 3. 

If there is the shared feature structure, such feature structure will be referred to as 
reentrant structure. In the case of a reentrant structure, two feature paths actually lead to the 
same node in the structure. 

 
                         ○ 
                head              cat 
 
 
          ○                               ○ 
subject                                           S 
             agreement 
 ○ 
 
agreement 
 
           ○ 
 
   per            num 
 
    ○              ○ 

3 sing 
Fig. 4 a feature structure with shared values 

In Fig. 4, the <head subject agreement> path and the <head agreement> path lead to the 
same location. They shared the feature structure 

per         3  
      num        sing 
 
The shared structure will be denoted in the matrix diagram by adding numerical indexes 

that signal the values to be shared. 
      cat     s 
                     agreement  ①   num     sing 
      head                           per       3 
 
                     subject        agreement   ① 
 
The reentrant structures give us the ability to express linguistic knowledge in the elegant 

ways.. 



7.4 Unification of feature structures 
There are two principle operations: 

� Merging the information content of two structure that are compatible; 
� Rejecting the merging of structures that are incompatible. 
Following are the examples:  
(1) 

num    sing   ∪    num    sing  =   num    sing 
(2) 

num    sing   ∪    num    plur  =  fials! 
(3) 

num    sing   ∪    num      []     =   num    sing 
(4) 

num   sing   ∪    per      3     =    num      sing 
                                       per       3 

(5) The reentrant structure 
 
agreement   ①    num  sing 
                  per     3 
 
subject        agreement  ① 

 
∪   subject    agreement       per       3 

                                num      sing 

 

 
agreement   ①    num  sing 
                  per     3 

= 
subject        agreement  ① 

 

(5) The copying capability of unification 
    agreement       ① 

    subject        agreement   ① 

 
∪   subject   agreement    per    3 
                         num   sing 
 
  =     agreement    ① 

 

         subject       agreement    ①   per     3 
                                         num     sing 
 
(6) The difference between features that actually share values and the features merely have similar 
values. 



     agreement       num    sing 
 

subject         agreement   num    sing 
 
∪   subject        agreement    per     3 

                                num     sing 
 
 =    agreement    num    sing 
 
     subject         agreement    num     sing 
                                per       3 

 
(7) The failure of unification 
 
 

agreement    ①  num      sing 
                per       3 
 
subject         agreement  ① 

 

 

∪  agreement      num    sing 

                   per     3 

 

    subject       agreement      num    plur 

                                 per     3 
 

Fails ! 
 
Feature structures are a way of representing partial information about some linguistic object 

or placing informational constrains on what the object can be. Unification can be seen as a way of 
merging the information in each feature structure, or describing objects which satisfy both sets of 
constraints. 

Intuitively, unifying two feature structures produces a new feature structure which is more 
specific (has more information) that or is identical to, either of the input feature structure. So 
unification is very useful in NLP. 
7.5 Complex feature and chart parsing 
7.5.1 The description of rule by DAG 
The rule of CFG can be described by the means of DAG. 
For example, following rule 
Rule 
  SÆNP VP 
     <NP head> = <VP head> 

<S subj> = NP 



which, expanded into its full form, is: 
Rule 
   X0 Æ X1 X2 
        <X0 cat> = S 
  <X1 cat> = NP 
  <X2 cat> = VP 
  <X1 head> = <X2 head> 
  <X0 subj> = <X1> 
This rule says that: 
 Every category X0 can be realized as a category X1 followed by a category X2 as long as the 
cat of X0 is S, the cat of X1 is NP, the cat of X2 is VP, the head of X1 is the same as the head of 
X2 and the subj of X0 is X1. 
We can represent this rule as follow by DAG: 
 
            X0                 X1                  X2 

○  Æ   ○     ○ 
                         head    head 

         cat      subj            cat                   cat 
                              ○ 
 
 
○     ○     ○ 
S                   NP                  VP 
   Fig. 1  DAG satisfying a rule 

Given three categories X0, X1 and X2, we could proceed, through the conditions of the rule and 
verify whether they are satisfied by the categories. 
 
7.5.2 Chart parsing with feature-based grammars: 
What exactly are the issues to be faced when implementing a parser for a grammar that allows 
complex categories? The basic parsing problem is the same. Whether categories are atoms or 
arbitrary feature structures. All that is required is that the basic operations of parser (testing for the 
equality, looking for rules, and so on) be redefined to accept a different data structure for 
categories. 
Let us start by surveying the main differences between parsing with monadic categories and with 
grammar involving complex categories. 
� The raw material of the grammar, the rules and lexical entries, are different. 
� We must start using DAGs in appropriate places in the chart. 
An edge in a chart recognizer is a structure with following components: 
   <START> = .. some integer … 
 <FINISH> = .. some integer .. 
 <LABEL> = .. some category … 
 <FOUND> = .. some category sequence … 
 <TOFIND> = .. some category sequence … 
If we would like to use complex categories in the chart parser, the dotted rule in any edge of the 



chart will now have as well as DAGs for its FOUND and TOFIND categories.  
Let us to see Fig. 2, 
       

○    Æ        ○             ●            ○ 
                  num           num 

  cat           cat  per                      cat    per 
 

  ○           ○     ○     ○            ○          ○ 
  S           NP      3                   VP           3 
    mood              mood 
 

○ 
         Fig. 2    dotted rule for active edge 

The rule in Fig 2. indicates that we have found an NP with ‘per 3’ and that, if we can find a VP 
with ‘per 3’, and the ‘num’ of NP and VP is same, then we will have found an S with ‘mood’ the 
same with the ‘mood’ of the VP. 
Let we see Fig. 3. 
                                 
                                 ○                 Æ  …● 

 

                        cat    num       mood 

 

 

○        ○          ○ 
VP       sing        declar 

 
Fig. 3  Dotted rule for inactive edge 

The rule in Fig. 3, indicates that we have found a VP with particular values ‘num sing’ and ‘mood 
declar’. It is an inactive, and the feature on the edag is compatible with the feature in the active 
edged in Fig. 2, so we can use the fundamental rule of chart parsing to combine them.  
       

○       Æ               ○                  ○            ● 

 

 

 cat     mood           cat  per      num  num        cat  per 

                                               

 

  ○                  ○        ○       ○         ○        ○ 
  S                  NP         3      sing         VP       3 
        ○                  mood 

declar 
 
                Fig. 4 result of applying the fundamental rule 
Fig. 4 is the result of applying the fundamental rule. We can see that the mood of S is the 



same as the mood of its VP, the value of mood is ‘declar’, the num of NP is the same as the num 
of VP, the value of ‘num’ is ‘sing’. What we have done here is here is to extend the whole 
sequence of DAGs just enough so that the DAG for the required VP and the DAG for the found 
VP are unified. In general, the result of an application of the fundamental rule is a new edge, and 
then the dot has been moved on one place to the right. In this process, the unification is the 
appropriate operation. 
  The backbone of this new rule is same with following monadic rule of chart parser: 
         <i, k, SÆNP VP.> 
  The backbone of label in the active edge is: 
        <i, j, SÆNP. VP> 
  The backbone of label in inactive edge is: 
         <j, k, VPÆ….> 
  We can use the fundamental rule with monadic features to represent the fundamental rule with 
complex features. The fundamental rule with complex features is more informative. 
 
7.6 Representation of lexical knowledge 
   In a NLP system, the lexical knowledge is very important. It is the core of NLP system. 
Modern grammatical frameworks are increasingly emphasizing the centrality of the lexicon. So 
we will attempt to look a bit more carefully at what information needs to be represented and how 
to be represented. 
We will begin by trying to consider just the syntactic information that the lexicon needs and how it 
may best be encoded 
There are really only three types of purely syntactic information associated with words: 
� The basic part of speech: For example, the word is a verb; 
� What the word combines with: that is, its complements, and possibly its subject; 
� Certain syntactically relevant inherent properties: for example, gender in the case of nouns. 

All three types of information are generally encoded within the syntactic category of a word 
in a feature-based syntax. 

Followings are the examples. 
(1) Lexeme Maedchen (girl): 
 <cat> = N 
 <gender> = neut 
This lexical entry tells us that the German word “Maedchen” is a neuter noun. 
(2) Lexeme love 
 <cat> = V 
 <arg0 cat> = NP 
 <arg) case> = nom 
 <arg1 cat> = NP 
 <arg1 case> = acc 
This lexical entry says that the English word ‘love’ is a verb that subcategorizes for an 

accusative object NP and combines with a nominative subject NP. It is clear that we are using the 
arg0 feature to code up information about subject of the verb and arg1 to code up information 
about the direct object. 

(3) Lexeme give: 



 <cat> = V   
   <arg0 cat> = NP 
  <arg0 case> = nom 
  <arg1 cat> = NP 
  <arg1 case> = acc 
  <arg2 cat> = PP 
  <arg2 pform> = to  
   Here, ‘<arg2 pform> = to’ means that the preposition of arg2 is ‘to’. 
The verb ‘bet’ (to risk money on the result of a future event) would force us to have an arg3 
feature as well. In the sentence 
           He bets me ten dollars on the John’s coming 
Here, ‘he’ is arg0, ‘ten dollars’ is arg1, ‘me’ is arg2, “on John’s coming” is arg3, it is the content of 
bet. 
In the sentence 
           He bets me ten dollars 
There is not the arg3. 
The syntactical feature can be represented as following: 
Rule1: 
 VP Æ V X1 X2 X3 
  <V arg1> = X1 
  <V arg2> = X2 
  <X arg3> = X3 
This rule can represent first sentence. 
Rule2 
 VP Æ V X1 X2 
  <V arg1> = X1 
  <V arg2> = X2 
  <V arg3> = 0 
This rule can represent second sentence. 
Generally speaking, four argument features (arg0, arg1, arg2, arg3) would be sufficient for an 
English grammar. 
English contains thousands of simple transitive verbs like ‘love’. If each one is given a separate 
fully specified entry like the one given here, then our English lexicon is going to be very large.  
One simple way to avoid this is through the use of abbreviations expressed as “macros”. 
 Macro syn_iV (intransitive verb – ‘die’) 
  <cat> = V 
  <arg0 cat> = NP 
  <arg0 case> = nom 
 Macro syn_tV (transitive verb – ‘eat’) 
  syn_iV 
  <arg1 cat> = NP 
  <arg1 case> = acc 
 Macro syn_dtV (ditransitive verb – ‘give’) 
  syn_tV 



  <arg2 cat> = PP 
  <arg2 pform> = to 
 Macro syn_datV (dative verb – ‘hand’) 
  syn_tV 
  <arg2 cat> = NP 
  <arg2 case> = acc 
The  idea of a macro is to have a single symbol, for instance syn_iV, which abbreviates a whole 
set of feature specifications – for instance <cat> = V, <arg0 cat> = NP, <arg0 case> = nom. In a 
lexical entry, whenever we include the name of a macro, it is as if we included the whole set of 
specifications that name abbreviates. 
We can even have macro definitions that invoke other macros, as syn_tV does with syn_iV. 
The advantage of macros is that we can have much shorter lexical entries that took like this: 
 -- Lexeme die 
  syn_iV 
    e.g. He died. 
 -- Lexeme elapse (to pass away) 
  syn_iV 
   e.g. 3 months have elapsed.  
 -- Lexeme eat 
  syn-iV 
 e.g. John eats. 
 -- Lexeme eat 
  syn_tV 
 e.g. We eat the fish. 
 -- Lexeme give 
  syn_tV 
 e.g You give me! 
 -- Lexeme give 
  syn_dtV 
 e.g You give the books to me.. 
 -- Lexeme give 
  syn_datV 
 e.g. You give me the books. 
 -- Lexeme hand 
  syn_dtV 
 e.g. You hand that book to me. 
 -- Lexeme hand 
  syn_datV 
 e.g. You hand me that book. 
 -- Lexeme love 
  syn_tV 
 e.g John loves Mary. 
Notice that many words will have several lexical entries in virtue of the various syntactic classes 
to which they belong. 



Macro is a useful abbreviatory device for the writer of the lexicon. 
Macro can be expanded as DAG. 
For example,  
Lexeme give: 
   syn_tV 
can be expanded as following DAG 
                   give 
 

○ 
 
 syn 
 
○ 

 
          cat         arg0      arg1 
 
 

○            ○                      ○ 
V 
       cat           case        cat          case 
 
      ○             ○         ○            ○ 
      NP           nom        NP            acc 
                       Fig. 5   expansion of macro 
 
If the macro is expanded to lexical entries, then these lexical entries can be unified with 

other expanded macros, the parser can use the complex features to calculate.  
 
7.7 Semantic features and macro 
Multiple entries for what is morphologically the same verb are not required merely to indicate 
syntactic variants, as they also correspond to semantic differences. 
This brings us to the semantic information needed in lexical entries. 
The sense of ‘eat’ in ‘we eat’ is a function with one argument – that is, something that needs to 
combine with one object to produce a proposition. 
The sense of ‘eat’ in ‘we eat fish’ is a function with two arguments – that is, something that needs 
to combine with two objects. 
We will distinguish such senses as ‘eat1a’ and ‘eat2a’. 
‘eat1a’ for the one-argument case, ‘eat2a’ for the two-argument case, and so on.  
The final alphabetic character in these sense names (e.g. ‘2a’ in ‘eat2a’) is to provide for the case 
of words with semantic variants with the same number of arguments (e.g. ‘eat2a’ needs two 
arguments). 
By this means, we can use ‘give3a’ for the semantic feature of ‘give’ in “we give fish to John”; 
and we use ‘give3b’ for the semantic feature of ‘give’ in “we give John fish” 
We will assume that ‘eat1a’, ‘eat2a’, ‘give3a’, ‘give3b’, and so on, are simpley logical constants to 



be found in our language of semantic representation, and we will completely ignore the logical 
relationship between these constants. Given such a simplistic view of semantics, all the lexicon 
has to do is to tell us what constants correspond to what words. 
From now on, we assume that lexical entry DAGs split initially into ‘syn’ (syntax), ‘sem’ 
(semantics) and ‘mor’ (morphology) branches, rather that only consisting of the ‘syn’ branch. For 
example, the DAG of ‘give2a’ will become to as follows: 

give 
 

○ 
 
 syn         sem           mor 
 
○                ○                 ○ 

                                     give2a 
          cat         arg0      arg1 
 
 

○            ○                      ○ 
V 
       cat           case        cat          case 
 
      ○             ○         ○            ○ 
      NP           nom        NP            acc 

                  Fig 1. DAG for ‘give2a’ 
This allow us to recast our lexical entries like this: 
--Lexeme die: 
 syn_iV 
 <sem> = die1a 
--Lexeme elapse: 
    syn_iV 
 <sem> = elapse1a 
 
--Lexeme eat 
 syn_iV 
 <sem> = eat1a 
 
--Lexeme eat: 
 syn_tV 
 <sem> = eat2a 
 
--Lexeme give 
 syn_tV 
 <sem> = give2a 
 



--Lexeme give 
 syn_dtV 
 <sem> = give3a 
 
--Lexeme give 
 syn_datV 
 <sem> = give3b 
 
--Lexeme hand 
 syn_dtV 
 <sem> = hand3a 
 
--Lexeme hand 
 syn_datV 
 <sem> = hand3b 
 
--Lexeme love 
 syn_tV 
 <sem> = love2a 
 
These entries still lack morphological information. 

 
7.8 Morphological features and macro 
 An English verb can appear in an absolute maximum of eight distinct forms, of which one is 
always particular (the root) and one is always predicable from the root (the present participle form 
in –ing) once you know the root. 
 For example, here are the various forms for the most irregular verb “be’ in English: 
    root – be 
           

form1 – am  
    form2 – are  
    form3 – is 
    form4 – was 
    form5 – were 
    form6 – been 
    form7 – being 
 
We use the feature “root” to encode the root, and “form1’ to “form7” as features for encoding the 
other seven potential verb forms. Here, “form1”. “form2”, and “form3” are the first, second and 
third-person present forms, respectively; “form4” is the first person singular past tense form; 
“form5’ is the second person singular past tense form; “form6’ is the past participle form; and 
“form7’ is the present participle form.  
However, the regular English verb is only manifested in four distinct forms, all of them predicable 
from the root. 



         root – stamp 
 
         form1 – stamp 
   form2 – stamp 
   form3 – stamps 
   form4 – stamped 
   form5 – stamped 
   form6 – stamped 
   form7 – stamping 
 

We will adopt an analysis in which each of the forms has a stem and an ending, representing 
the basis word from which they are formed (always the root for regular verbs), together with the 
ending that is added for this form. 
   We can provide an abbreviation regular verbs as follows: 
 

Macro mor_reg_V 
                 <mor form1 stem> = <mor root> 
                   <mor form1 ending> = ε 
     <mor form2 stem> = <mor root> 
     <mor form2 ending> = ε 
     <mor form3 stem> = <mor root> 
     <mor form3 ending> = s 
     <mor form4 stem> = <mor root> 
     <mor form4 ending> = ed 
     <mor form5 stem> = <mor root> 
     <mor form5 ending> = ed 
     <mor form6 stem> = <mor root> 
     <mor form6 ending> = ed 
     <mor form7 stem) = <mor root> 
     <mor form7 ending> = ing 
whereε indicates the empty ending. 

Now we assume that the stem and the ending will be combined in the word using the 

rule of English orthography, so that “love’ with ‘ing’ gives rise to ‘loving’ 

and not ‘loveing’. 

Given this macro under its intended interpretation, we can exhibit the lexical entry 

for “love”: 

    Lexeme love 
     <mor root> = love 
        mor_regV 
     sin_tV 
     <sem> = love2a 
The first line here is self-evidently redundant, since the name of the lexical entry is identical with 
the root form. We can by convention always name a lexical entry in this way. Accordingly, we will 
henceforth treat: 



 
   Lexeme xxx 

yyy 
…: 
zzz 

as abbreviating: 
Lexeme xxx 
 <mor root> = xxx 
    yyy 
    … 
    zzz 

This means that our entry for “love’ can be simplified to: 
   Lexeme love 
    mor_regV 
                syn_tV 
                <sem> = love2a 
Given our various macro and other conventions, this entry can be expanded to a set of feature 
specifications: 
 

Lexeme love 
        <mor root> = love 

                 <mor form1 stem> = love 
                   <mor form1 ending> = ε 
     <mor form2 stem> = love 
     <mor form2 ending> = ε 
     <mor form3 stem> = love 
     <mor form3 ending> = s 
     <mor form4 stem> = love 
     <mor form4 ending> = ed 
     <mor form5 stem> = love 
     <mor form5 ending> = ed 
     <mor form6 stem> = love 
     <mor form6 ending> = ed 
     <mor form7 stem) = love 
     <mor form7 ending> = ing 
     <syn cat> = V 
     <syn arg0 cat> = NP 
     <syn arg0 case> = nom 
     <syn arg1 cat> = NP 
     <syn arg1 case> = acc 
     <sem> = love2a 
 
Not all the verbs are regular. Both ‘eat’ and ‘give’ have wholly particular past tense forms together 
with ‘-en’ past participles. Their present tense and present participle forms are regular. In this case, 



we will use another macro definition to capture a class of verbs including both of these. 
    Macro mor_presV 
                <mor form1 stem> = <mor root> 
     <mor form1 ending> =ε 

     <mor form2 stem> = <mor root> 

     <mor form2 ending> =ε 

     <mor form3 stem> = <mor root> 

     <mor form3 ending> = s 

     <mor form4 stem> = <mor form5 stem> 

     <mor form4 ending>=ε 

     <mor form5 ending> =ε 

     <mor form6 stem> = <mor root> 

     <mor form6 ending> = en 

     <mor form7 stem> = <mor root> 

     <mor form7 ending> = ing 

Here, for ‘eat’, the stem of form4 and form5 is ‘ate’; for ‘give’. The stem 

of form4 and form5 is ‘gave’. 

 

Equipped with these abbreviations, our lexicon now looks as follows: 

 

    --Lexeme die: 

           mor_regV 

syn_iV 

<sem> = die1a 

                 --Lexeme elaps: 
     mor_regV 
     syn_iV 
     <sem> = elapse1a 
        --Lexeme eat: 
     mor_presV 
     <mor form4 stem> = ate 
     syn_iV 
     <sem> = eat1a 
    --Lexeme eat: 
     mor_presV 
     <mor form4 stem> = ate 
     syn_tV 
     <sem> = eat2a 
    --Lexeme give: 
     mor_presV 
     <mor form4 stem> = gave 
     syn_tV 
     <sem> = give2a 
    --Lexeme give: 



     mor_presV 
     <mor form4 stem> = gave 
     syn_dtV 
     <sem> = give3a 
    --Lexeme give 
     mor_presV 
     <mor form4 stem> = gave 
     syn_datV 
     <sem> = give3b 
    --Lexeme hand: 
     mor_regV 
     syn_dtV 
     <sem> = hand3a 
    --Lexeme hand: 
     mor_regV 
     syn_datV 
     <sem> = hand3b 
    --Lexeme love: 
     mor_regV 
     syn_tV 
     <sem> = love2a 
 
7.9 Word Form Clause (WFC) 

Now we have a way to express certain kinds of lexical knowledge. We can think about how 
this knowledge is to be used in a NLP system. 

For the moment, let us consider this from the point of view of a language analysis system. 
Such a system is represented with a sequence of unanalyzed words as its input and needs to 
determine the relevant features for each words – that is, syntactic features for parsing and semantic 
features for determining the meaning. But, as all the lexical knowledge is about word roots, to 
determine the relevant features, we need to determine how the word can be analyzed as being 
some form of a root which is in the lexicon. 

For this, we need to be able to analyze a word in terms of the possible stems and endings that 
make it up. Basically, the approach is to look at the end of the word for a regular English ending 
and propose the part of the word before this ending as a possible root. 
   The process will have to be modified to take account of the rules of English orthography. For 
instance, ‘loving’ can be analyzed as stem ‘love’ with ending ‘ing’. 
 One way of looking at the relations between a word and a lexeme is in terms of a ‘Word 
Form Clause” (WFC). WFC state the conditions under which the relation can hold. Then when we 
have a word and a possible lexeme that it might be related to, we attempt to find a WFC that can 
be applied. As in application of grammar rule, we try to construct an extension of the DAG 
representing the word, which will only contain information about the stem and the ending, and the 
DAG representing the lexeme, which contain only general information that can be applied to all 
forms of the lexeme, in such a way that the WFC condition are satisfied. The computation of these 
extensions then results in the words inheriting extra syntactic and semantic features from the 



lexeme, as well as specific properties described in the WFC. 
Here is a WFC for the third-person singular, present Tense form class of English verbs: 
  WFC third_sing: 
   <word mor form> = <lexeme mor form3> 
   <word syn> = <lexeme syn> 
   <word syn cat> = V 
   <word syn arg0 per> = 3 
   <word syn arg0 num> = sing 
   <word syn tense> = pres 
   <word sem> = <lexeme sem> 
This WFC says that a word is the third singular form of the lexeme if the following conditions can 
be satisfied. The ‘form’ of the word must be the same as the ‘form3’ form of the lexeme; that is, 
the stem values must both unify, as must the ending values. The ‘syn’ path of the word must unify 
with the ‘syn’ specifications shown; it must unify with the ‘syn’ of the lexeme and have the 
mentioned extra properties. Finally, the ‘sem’ of the word must unify with the ‘sem’ of the lexeme. 
  Here is how we would use WFCs in a language analysis program. From an output of the 
morphological analyzer, we can build a partial description of a word, consisting of its <mor form>, 
with a stem and an ending. For example, for the word ‘loves’, we could build the following: 
 

Word loves: 
   <mor form stem> = love 
 <mor form ending> = s 

 
We now need to determine a lexical entry and a way in which this word is related to that entry. Let 
us assume that we try the lexeme ‘love’ and the relation ‘third_sing’. So, we now attempt to find 
extensions for the ‘loves’ DAG, which plays the role of the ‘word’, and for the DAG for the 
lexeme ‘love’, which plays the role of the ‘lexeme’, in such a way that the conditions of the WFC 
are satisfied. That is, we attempt the unifications specified in the ‘third_sing’ WFC, with ‘word’ 
taken to indicate the word DAG and ‘lexeme’ the DAG provided by the lexical entry for ‘love’. In 
this case, all the unification succeed. If they did not, we would have to try another possible WFC 
or lexical entry. As a result of the unification, we find an extension to the word DAG, describable 
as follows: 
 
  Word loves: 
   <mor form stem> = love 
   <mor form ending> = s 
   <syn cat> = v 
   <syn tense> = pres 
   <syn arg0 cat> = NP 
   <syn arg0 case> = nom 
   <syn arg0 per> = 3 
   <syn arg0 num> = sing 
   <syn arg1 cat> = NP 
   <syn arg1 case> = acc 



   <sem> = love2a 
 
This is the kind of category structure that we can use for parsing.  
To summarize, here is how lexical works in the language analyzer. Incoming words are processed 
by a morphological analyzer to yield possible stem and ending values. For each such result, 
possible lexemes are retrieved from the lexicon. For each possible partial word description and 
possible lexeme that it may be related to, possible WFCs are invoked. Each such successful 
invocation results in a full word description (DAG) which can be used in later stages such as 
parsing. In a system where we have many lexical entries and WFCs, indexing of the lexical data 
structures will be vital for efficient processing. 
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